Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study.

نویسندگان

  • Lydia M Le Page
  • Oliver J Rider
  • Andrew J Lewis
  • Vicky Ball
  • Kieran Clarke
  • Edvin Johansson
  • Carolyn A Carr
  • Lisa C Heather
  • Damian J Tyler
چکیده

Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antioxidant treatment attenuates lactate production in diabetic nephropathy.

The early progression of diabetic nephropathy is notoriously difficult to detect and quantify before the occurrence of substantial histological damage. Recently, hyperpolarized [1-13C]pyruvate has demonstrated increased lactate production in the kidney early after the onset of diabetes, implying increased lactate dehydrogenase activity as a consequence of increased nicotinamide adenine dinucleo...

متن کامل

Hyperpolarized 13C and 31P magnetic resonance spectroscopy identify pyruvate dehydrogenase as a therapeutic target in obesity cardiomyopathy

Background Although the link between altered myocardial substrate selection and impaired function in obesity cardiomyopathy is unclear, it is likely to involve altered activity of pyruvate dehydrogenase (PDH), a key regulator of carbohydrate metabolism. We hypothesised that; 1) obesity would impair myocardial carbohydrate oxidation, in turn reducing energetic reserve and predisposing to functio...

متن کامل

Hyperpolarized 13C-pyruvate magnetic resonance reveals rapid lactate export in metastatic renal cell carcinomas.

Renal cell carcinomas (RCC) are a heterogeneous group of tumors with a wide range of aggressiveness. Noninvasive methods to confidently predict the tumor biologic behavior and select appropriate treatment are lacking. Here, we investigate the dynamic metabolic flux in living RCC cells using hyperpolarized (13)C-pyruvate magnetic resonance spectroscopy (MRS) combined with a bioreactor platform a...

متن کامل

Flux through hepatic pyruvate carboxylase and phosphoenolpyruvate carboxykinase detected by hyperpolarized 13C magnetic resonance.

In the heart, detection of hyperpolarized [(13)C]bicarbonate and (13)CO(2) by magnetic resonance (MR) after administration of hyperpolarized [1-(13)C]pyruvate is caused exclusively by oxidative decarboxylation of pyruvate via the pyruvate dehydrogenase complex (PDH). However, liver mitochondria possess alternative anabolic pathways accessible by [1-(13)C]pyruvate, which may allow a wider diagno...

متن کامل

Imaging Role of Pyruvate Dehydrogenase Inhibition in the Development of Hypertrophy in the Hyperthyroid Rat Heart A Combined Magnetic Resonance Imaging and Hyperpolarized Magnetic Resonance Spectroscopy Study

Background—Hyperthyroidism increases heart rate, contractility, cardiac output, and metabolic rate. It is also accompanied by alterations in the regulation of cardiac substrate use. Specifically, hyperthyroidism increases the ex vivo activity of pyruvate dehydrogenase kinase, thereby inhibiting glucose oxidation via pyruvate dehydrogenase. Cardiac hypertrophy is another effect of hyperthyroidis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Diabetes

دوره 64 8  شماره 

صفحات  -

تاریخ انتشار 2015